INSPIRON ENGG. PVT. LTD.

Lean Manufacturing
Implementation Progress
Report

Lean Initiatives

- Project Charter
 - ✓ Project Stenter
 - ✓ Project Flyer
 - ✓ Project Foundry
 - ✓ Project Combi-Chain
 - ✓ Project Quality Through Design

Lean Project Progress – 8 Step Process

I - Commitment to Lean

II - Choose Value Stream

III - Learn About Lean

IV - Map Current State

V – Identify Lean Matrics

VI - Map Future State

Create Pull

VII - Implement Kaizen Create Perfection

To Monitor the progress, the Milestones need to be monitored

Tracking Lean Project Progress

Project Stenter

- Goal / Target
 - Manufacturing 2 Stenters / Month for Domestic market and 15 Chambers for Monforts (Export)
- Target Date
 - Domestic 31st Jul, 2008
 - Exports 31st Dec, 2008
- Idealogy
 - Manufacturing 1 Chamber per Day

Project Stenter

- Methodology
 - Mapping Current Value Stream and opportunities
 - Batch Production
 - High Inventory
 - Standardization in production ?
 - Preparing Future State Map
 - Manufacturing 1 chamber per day
 - Defining the Road Map for creating Flow
 - Converting Stenter BOM into Chamber-wise BOM
 - Stenter Fabrication on Two Lines Chamber, others
 - Implementing the Road Map
 - De-bottlenecking the capacity
 - Creating Pull by producing only when required
 - Creating Perfection by enabling FTR Principle

Project Stenter – Review 1(17/7/2008)

- Goal
 - 1 Chamber Per Day
- Current Status
 - Chamber wise Manufacturing Cycle Planned
 - Expected problems listed
 - Setup time expected to increase
 - To Start with ALC Project
 - Team Meetings held 7

Project Stenter – Review (31/7/2008)

- Goal
 - 1 Chamber Per Day
- Current Status
 - Chamber wise Manufacturing of ALC Started
 - Setup time increased,
 - Shop floor acceptability of concept to be developed
 - ALC Project completion Delayed by 5 Days
 - Team Meetings held 5
 - Chambers / Day 0.25 (Approx 4 Days/Chamber)

Project Stenter – Review (5/8/2008)

- Goal
 - 1 Chamber Per Day
- Current Status
 - Chamber wise Manufacturing of ALC Completed
 - Correction in Methodology required
 - Team Confidence building required
 - Raymond 1 Project completion planned by 23/8/08
 - Team Meetings held 2
 - Chambers / Day for ALC 0.5 (Approx 2 Days/Chamber except 40 % components taken from VA Project)

Project Stenter – Review (9/8/2008)

- Goal
 - 1 Chamber Per Day
- Current Status
 - Chamber wise Manufacturing of ALC Completed
 - Correction in Methodology
 - To schedule Panels and Nozzles after Assy. Requirement
 - •To use full sheets on nibbling
 - •To monitor finn-power and Bending output hourly
 - Shop floor acceptability of concept developed
 - Raymond 1 Project completion planned by 23/8/08
 - Team Meetings held 1
 - Chambers / Day
 - Nibbling 0.65 (Approx 1 Days/Chamber except panel and nozzle)
 - Bending 0.65 (Nibbled components bending on single piece basis)

Project Stenter

- ☐ Finn power to produce 90% components of the machine using full sheet only i.e. shearing to be utilized for only 10% components
- SMED Application for reducing Setup Time on Bending
- □ Re-layout Fabrication
- □ Re-layout Assembly
- ☐ Faster drying of painted components
- B/O material to be procured as per the assembly requirement only (in Kit)
- ☐ Sheets to be procured as per required size only

Project Stenter

Finn power Utilization	18/9/2008
SMED Application on Bending	26/8/2008
Study Setup	26/8/2008
Apply SMED	02/9/2008
New Method for Setup	17/9/2008
Implementation	18/9/2008
Re-layout – Fabrication	15/9/2008
Re-layout – Assembly	15/9/2008
Faster drying of painted components	18/10/2008
Kit Based Procurement	18/9/2008
Sheets procured in required size only	18/9/2008

Project Flyer

- Goal / Target
 - •Reduce the Lead time from 4 Days to 1 Day
 - •Reduce inventory from 800(AC) & 380(ACS) to 300(AC) & 160(ACS)
- Target Date
 - ■10th Jul, 2008

Lean Manufacturing - Flyer

Project Flyer

- Methodology
 - Mapping Current Value Stream and opportunities
 - Single Piece Flow
 - Cell Layout
 - Multi-skilling
 - Manpower requirement 37, distance 132.3 m
 - Preparing Future State Map
 - ■Lead Time 1 Day i.e. Flyer loaded in shop to get packed on the same day
 - Defining the Road Map for creating Flow
 - Enabling single piece flow, Re-layout
 - Pushing for complete processing of flyer on same day
 - Multi Skilling
 - •Implementing the Road Map
 - Creating Pull by producing only when required
 - Creating Perfection by enabling FTR Principle

Project Flyer – Review 1(17/7/2008)

- Goal
 - Lead Time 1 Day
- Current Status
 - •Flyer loaded in shop gets packed on same day with existing 47 manpower
 - Cell Layout to be designed
 - •Manpower reduced to 37 permanent employees
 - •To repeat the success with same manpower
 - Team Meetings held 5

Project Flyer – Review (5/8/2008)

- Goal
 - Lead Time 1 Day
- Current Status
 - Achieved Lead time of 1 Day
 - Awaiting order for establishing 1 day lead time with 37 workmen
 - Re-Layout pending
 - Multi skilling pending
 - Team Meetings held Nil

Project Flyer – Review (9/8/2008)

- Goal
 - Lead Time 1 Day
- Current Status
 - •Same as on 5/8/2008
 - Layout exercise to be completed by 17th Aug, 2008
 - Team Meetings held 1
 - •Multi-skilling and Skill Chart to be started.

Project Foundry

- Goal / Target
 - Reducing Casting rejections
 - Casting Rejections < 3.5 %
 - Post Machining Casting rejections < 5 %</p>
- Target Date
 - ■- 31st Aug, 2008
- Idealogy
 - Manufacturing First Time Right

Project Foundry

- Methodology
 - Analyzing Casting Rejections
 - •Identifying & Prioritizing High rejection Components
 - Production Volume
 - Repeat order
 - Rejection Volume
 - Defining the Road Map for Rejection Reduction
 - Root Cause Analysis for selected Components
 - Identifying Root Cause for defect
 - Validating Root cause by DOE
 - Applying the Corrective Measures
 - Applying preventive measures for other components having similar defect
 - Implementing the Road Map
 - Creating Perfection by enabling FTR Principle

Project Foundry - Review 1(17/7/2008)

- Goal
 - Reducing Casting rejections
 - Casting Rejections < 3.5 %
 - Post Machining Casting rejections < 5 %

Current Status

- Average Casting rejection for past 6 months
 - Casting Rejections 6.12 %
 - Post Machining Casting rejections 7.72 %
- Average Casting rejection for June
 - Casting Rejections 4.5 %
 - Post Machining Casting rejections 6.2 %
- Identification of high rejection components done
- Expected root causes listed
- Team Meetings held 4

Project Foundry – Review (5/8/2008)

- Goal
- Reducing Casting rejections
 - •Casting Rejections < 3.5 %</p>
 - Post Machining Casting rejections < 5 %
- Current Status
 - Overall Foundry Rejection for July 8.72 %
 - Rejection higher than average for 6 months
 - Action Plan for achieving Target Expected by 7/8/2008
 - Team Meetings held -

Project Combi-Chain

- Goal / Target
 - Increasing the production capacity of Combi-Chain Top part from 2000 to 5000 PM.
 - Producing 200 nos/day (1 shift)
- Target Date
 - ■- 31st Aug, 2008
- Idealogy
 - Manufacturing First Time Right, on single piece basis.

Project Combi-Chain

- Methodology
 - Mapping Current Value Stream and opportunities
 - Single Piece Flow
 - Cell Layout
 - •Multi-skilling
 - Manpower requirement 10
 - •Heat Treatment & 1st Lapping process ???
 - Preparing Future State Map
 - •Cell Layout, with one person assembling the complete combi-Chain Top part
 - Eliminating NVA
 - Defining the Road Map for creating Flow
 - Analyzing NVA operations Heat Treatment, 1st Lapping
 - DOE for validating NVA
 - Re-designing processing for assly.
 - Enabling single piece flow, Cell-layout
 - Multi Skilling
 - Implementing the Road Map
 - Creating Perfection by enabling FTR Principle

Project Combi-Chain - Review 1(17/7/2008)

- Goal
 - Increase production capacity of Combi-Chain Top part from 2000 to 5000 PM.
 - Producing 200 nos/day (1 shift)
- Current Status
 - Analysis and experimentation for NVA activities done
 - Heat Treatment NVA (Experiments done, discussed with Mr. Panjikar)
 - •To be implemented for Domestic, To be discussed and finalized for Exports
 - Manufacturing process in 4 cells
 - •Putty Fitting & Taster Filing (2, 30/hr)
 - Combi Chain Assembly (4, 7.5/hr/cell)
 - Lapping (4, 7.5/hr/cell)
 - Inspection and Packing (2*, 30/hr)
 - *(*Inspection to be done by QA & Prod)
 - Team Meetings held 7

Project Combi-Chain – Review (5/8/2008)

- Goal
 - •Increase production capacity of Combi-Chain Top part from 2000 to 5000 PM.
 - Producing 200 nos/day (1 shift)
- Current Status
 - Training for Workplace Layout given
 - Work table Layout Pending
 - Team Meetings held 2